
Lecture 15
The Central Limit Theorem

Sampling Distributions of ҧ𝑥 and 
Ƹ𝑝



Mean and variance of Continuous Random 
Variables 
• The mean 𝜇 of continuous random variable cannot (usually) be 

defined or computed without calculus, but it is the “balance point” of 
its probability distribution.

• The standard deviation 𝜎 of a continuous random variable cannot
(usually) be defined or computed without calculus, but it measures 
the “spread” of the probability distribution.



Continuous Distributions: A few extra points

• Unlike discrete distributions, the height of the curve 
DOES NOT denote the probability of a given value

• The y-axis of a continuous distribution is the probability 
density

• Because a continuous distribution covers an infinite 
number of possible outcomes, the probability of 
observing any particular value is zero! 



Connecting Back to Cumulative Distributions

• Review:
The cumulative distribution 
of a variable gives the 
proportion of observations 
that at less than or equal to a 
certain value

• The cumulative 
distribution of random 
variable 𝑋 is a function 
which gives the probability 
that 𝑋 is less than or equal 
to some value 𝑥

𝐹𝑋 𝑥 = 𝑃(𝑋 < 𝑥)

Cumulative probability is 
calculated from left to right



The Normal Distribution

• One important family of continuous probability distributions is the normal distribution.

• PDF normal 

𝑓 𝑥 =
1

𝜎 2𝜋
⋅ 𝑒

− 𝑥−𝜇 2

2𝜎2



Tips For Finding Probabilities From 
Continuous Distributions

- Tips for finding probabilities from continuous distributions

- As we point out before, for a continuous distribution 𝑃(
)

𝑋 =
𝑥 = 0

- So we typically deal with finding probabilities of 𝑋 falling in some 
interval 

e.g 𝑃 𝑋 < 𝑥 , 𝑃 𝑋 > 𝑥 , or 𝑃(𝑎 < 𝑋 < 𝑏)

Since most probability tables and software compute the 
probabilities using the cumulative distribution function we can 
use the following rules:

• 𝑃 𝑋 > 𝑥 = 1 − 𝑃 𝑋 ≤ 𝑥

• 𝑃 𝑎 < 𝑋 < 𝑏 = 𝑃 𝑋 < b − 𝑃(𝑋 < 𝑎)

𝑃(𝑋 < 1.8)

𝑃 −1.3 < 𝑋 < 1.8 ?

𝑃(𝑋 < −1.3)



Computing Probabilities From A Normal 
Distribution
• If we want to find the probability of a given value that we know 

follows a normal probability distribution we must first find its 𝑧-score

𝑧 =
𝑥 − 𝜇

𝜎
∼ 𝑁 0,1 if 𝑋 ∼ 𝑁 𝜇, 𝜎

• We can use a probability table for the standard normal distribution or 
use software such as http://www.statdistributions.com/normal/ or 
the app in the course website to compute the probabilities based on 
𝑧-scores. 

http://www.statdistributions.com/normal/


Examples: 

Using the Z-table in the course website find the following probabilities. 
(you can use the app in the course website to check your answers)

𝑋 ∼ 𝑁(𝜇 = 100, 𝜎 = 5):

• 𝑃(𝑋 < 90)

• 𝑃 𝑋 > 85

• 𝑃(90 ≤ 𝑋 ≤ 110)



Examples: 

Using the Z-table in the course website find the following probabilities. 
(you can use the app in the course website to check your answers)

𝑋 ∼ 𝑁(𝜇 = 20, 𝜎 = 10):

• 𝑃(𝑋 ≤ 5)

• 𝑃 𝑋 ≥ 45

• 𝑃(5 < 𝑋 < 15)



Three Types of Distributions:

• Population Distribution – the probability distribution of a single observation of a 
random variable – shows the possible outcomes of the single observation and 
their probabilities. 
• Its properties are described by unknown parameters such as 𝑝 or 𝜇, 𝜎2, 𝜎

• Data Distribution – This is the distribution(s) of variable(s) in our sample based 
on the observations we sampled. 
• Its properties are described by statistics such as ҧ𝑥 or Ƹ𝑝, 𝑠2, 𝑠
• The data distribution of a variable will converge to the population distribution as 𝑛 → 𝑁

• Sampling Distribution – This is the distribution(s) of statistic(s) computed from 
the observations in the sample. This distribution arises from repeatedly sampling 
from the same population and computing statistics from those samples. It tells us 
how close a given estimate is to the true population parameter it is estimating 
(sampling error). 
• Its properties are described by  the properties of the population distribution and sample size 
𝑛



Central Limit Theorem
• The central limit theorem gives us some nice guarantees about the shape of the distribution of a 

statistic

Definition: if X1, X2, … Xn are independent and identically distributed random variables (all have the 
same distribution) such that 

𝐸 𝑋𝑖 = 𝜇 and 𝐸 𝑋𝑖 − 𝜇 2 = 𝜎2 < ∞ (have finite variance)

Then,

𝑛 ത𝑋 − 𝜇

𝜎
→
𝑑

𝑁 0,1

Where ത𝑋 = σ𝑖=1
𝑛 𝑋𝑖

𝑛
and where →

𝑑
denotes convergence in distribution

(in layman’s terms) the central limit theorem states that as the sample size increases the shape of a 
sampling distribution of ҧ𝑥 will “approach” that of a normal distribution



Sampling Distributions of ҧ𝑥 and Ƹ𝑝

The sampling distribution of the mean

• The mean of ҧ𝑥 is:   𝜇 - the population mean 

• The standard deviation of ҧ𝑥 is:   ൗ
𝜎

𝑛

The sampling distribution of the sample proportion

• The mean of Ƹ𝑝 is:    𝑝 – the population proportion 

• The standard deviation of Ƹ𝑝 is:    
𝑝(1−𝑝)

𝑛



California Gubernatorial Election 
• Election polling is one of the few cases where we know 𝑝 - the true proportion of voters (either 

voting for one candidate or another) - because all the votes are counted.

• From our example in week two about the California race for governor, the true population 
proportion of voters who cast a vote for Democrat Jerry Brown was 54.8% while the sample 
proportion measured from 3,889 voter interviews was 53.1%. 

• What are the mean and standard deviation of Ƹ𝑝?

mean of Ƹ𝑝 = 0.548

SD of Ƹ𝑝 =
0.531 × (1 − 0.531)

3889
= 6.4𝑒−5 = 0.008

• Why is the standard deviation so small?



Central Limit Theorem



Applying The CLT

• Recall that the Empirical Rule tells us how observations are 
distributed for approximately symmetric  bell-shaped (normal) 
distributions.

• Since 95% of observations in a normal distribution fall within 2 
standard deviations of the mean. 

• Adapting the rule for probability distributions means that there is a 
95% probability that random variable will fall within ∓2 standard 
deviations of the mean of the distribution.



Applying The CLT

The probability that ҧ𝑥 will be between 𝜇 − ൗ2𝜎
𝑛

and 𝜇 + ൗ2𝜎
𝑛

is 

approximately 0.95

• The probability that Ƹ𝑝 will be between 𝑝 − 2 Τ𝑝(1−𝑝)
𝑛 and 

𝑝 + 2 Τ𝑝(1−𝑝)
𝑛 is approximately 0.95



Estimation

Estimation is a type of statistical inference where we use our statistic to 
estimate a parameter

• We can use ҧ𝑥 (the means of a sample of 𝑛 observations) to estimate the 
mean of single observation (i.e 𝜇) 

• We can use 𝑠 (the standard deviation of the observations a sample of 𝑛
observations) to estimate the standard deviation of a single observation 
(i.e 𝜎)

• We can use Ƹ𝑝 (the proportion of observations that are a “success” in a 
sample of 𝑛 observations) to estimate the probability of success (i.e 𝑝) 



Some Technical Points

Note that parameters 𝜇, 𝑝, 𝜎 have a couple of interpretations. 
• The first is that they are the properties of the population distribution. 
• In a survey with a finite number of observations, these parameters are also properties of the set of all 

observations in the population
• Ex. 𝜇 is the mean for the probability distribution of a single observation but it is also the mean of the set of all 

observations in the population – we can interpret it either way

• We use the sampling distribution of our statistics to determine how effective they are at estimating 
the parameters of interest.
• Both ҧ𝑥 and 𝑝 are unbiased estimators

• A standard error is the standard deviation of a statistic

• The central limit theorem implies that (unless 𝑛 is very small) the shape of the sampling distributions of ҧ𝑥 and 
𝑝 are approximately normal

The above properties rely on some technical assumptions about how the data are collected which we 
will talk about in a few lectures



Example 

• Recall from the tiger trout example on Wednesday that the probability of catching a tiger trout in 
a single cast was 5%. Suppose a fisherman makes 450 casts in an afternoon and marks any time 
he catches a tiger trout as a success. Compute the interval for which the probability of Ƹ𝑝 is 
approximately 0.95

• 𝑛 = 450

• 𝑝 = 0.05

• 𝑃 𝑝 − 2 Τ𝑝 1−𝑝
𝑛 < Ƹ𝑝 < 𝑝 + 2 Τ𝑝 1−𝑝

𝑛 = 0.95

• 𝑆𝐷 = 0.01
0.05 − 2 × 0.01, 0.05 + 2 × 0.01

𝑃 0.03 < Ƹ𝑝 < 0.07 = 0.95


	Slide 1: Lecture 15 The Central Limit Theorem Sampling Distributions of x bar  and p hat   
	Slide 2: Mean and variance of Continuous Random Variables 
	Slide 3: Continuous Distributions: A few extra points
	Slide 4: Connecting Back to Cumulative Distributions
	Slide 5: The Normal Distribution
	Slide 6: Tips For Finding Probabilities From Continuous Distributions
	Slide 7: Computing Probabilities From A Normal Distribution
	Slide 8: Examples: 
	Slide 9: Examples: 
	Slide 10: Three Types of Distributions:
	Slide 11: Central Limit Theorem
	Slide 12: Sampling Distributions of x bar  and p hat 
	Slide 13: California Gubernatorial Election 
	Slide 14: Central Limit Theorem
	Slide 15: Applying The CLT
	Slide 16: Applying The CLT
	Slide 17: Estimation
	Slide 18: Some Technical Points
	Slide 19: Example 

